



# DENIAL OF SERVICE

---

## DoS & DDoS ATTACK TECHNIQUES

Master denial-of-service attack methodologies, distributed attacks, botnet operations, auditing tools, and defensive countermeasures.

2026 Edition



## TABLE OF CONTENTS

---

|                                               |    |
|-----------------------------------------------|----|
| 1. Introduction to Denial-of-Service .....    | 3  |
| 2. DoS vs DDoS Attacks .....                  | 7  |
| 3. Volumetric Attacks .....                   | 11 |
| 4. Protocol Attacks .....                     | 16 |
| 5. Application Layer Attacks .....            | 21 |
| 6. Amplification and Reflection Attacks ..... | 26 |
| 7. Botnets and Attack Infrastructure .....    | 31 |
| 8. DoS/DDoS Attack Tools .....                | 36 |
| 9. Case Studies: Major DDoS Attacks .....     | 41 |
| 10. Detection and Monitoring .....            | 45 |
| 11. Mitigation Strategies .....               | 50 |
| 12. Countermeasures and Defense .....         | 55 |

## 1. INTRODUCTION TO DENIAL-OF-SERVICE

---

Denial-of-Service (DoS) attacks aim to make systems, services, or networks unavailable to legitimate users by overwhelming resources or exploiting vulnerabilities. These attacks can cause significant financial and reputational damage to organizations.

### What is a Denial-of-Service Attack?

A Denial-of-Service attack is an attempt to disrupt the normal functioning of a targeted server, service, or network by overwhelming it with a flood of traffic or sending information that triggers a crash. The goal is to deny legitimate users access to the resource.

### DoS ATTACK OBJECTIVES

- ▶ Disrupt business operations and services
- ▶ Cause financial losses (downtime costs)
- ▶ Damage reputation and customer trust
- ▶ Distract security teams during other attacks
- ▶ Extortion and ransom demands
- ▶ Political or ideological statements
- ▶ Competitive sabotage
- ▶ Personal revenge or grievance

### Impact of DoS Attacks

#### Financial Impact

- ▶ Lost revenue during downtime
- ▶ Emergency response costs
- ▶ Recovery and remediation expenses
- ▶ Potential regulatory fines
- ▶ Customer compensation
- ▶ **Average Cost:** \$20,000 - \$40,000 per hour of downtime

#### Operational Impact

- ▶ Service unavailability
- ▶ Employee productivity loss
- ▶ Resource exhaustion
- ▶ Cascading failures
- ▶ Delayed projects and deadlines

#### Reputational Impact

- ▶ Customer dissatisfaction
- ▶ Loss of trust
- ▶ Media attention
- ▶ Competitive disadvantage
- ▶ Long-term brand damage

## DoS ATTACK CATEGORIES

### By Attack Vector

- ▶ **Volumetric Attacks** – Flood bandwidth with massive traffic
- ▶ **Protocol Attacks** – Exploit protocol weaknesses
- ▶ **Application Layer** – Target specific applications

### By Source

- ▶ **Single Source (DoS)** – One attacking machine
- ▶ **Distributed (DDoS)** – Multiple attacking machines
- ▶ **Reflected** – Using third-party systems
- ▶ **Amplified** – Multiplying attack traffic

## ATTACK METRICS

### Measuring Attack Strength

- ▶ **Bits per Second (bps)** – Bandwidth consumption  
Gbps, Tbps for large attacks
- ▶ **Packets per Second (pps)** – Processing load  
Millions/billions of packets
- ▶ **Requests per Second (rps)** – Application load  
HTTP requests for L7 attacks
- ▶ **Connections per Second** – State table exhaustion

### Attack Scale Reference

- ▶ Small: < 1 Gbps
- ▶ Medium: 1-10 Gbps
- ▶ Large: 10-100 Gbps
- ▶ Massive: 100+ Gbps
- ▶ Record attacks: 3.47 Tbps (2022)

## WHO LAUNCHES DoS ATTACKS?

- ▶ **Hacktivists** – Political/social motivation
- ▶ **Cybercriminals** – Extortion, ransom
- ▶ **Nation-States** – Cyberwarfare, disruption
- ▶ **Competitors** – Business sabotage
- ▶ **Script Kiddies** – Notoriety, testing tools
- ▶ **Disgruntled Insiders** – Revenge
- ▶ **DDoS-for-Hire** – Booter/stresser services

## 2. DoS vs DDoS ATTACKS

---

Understanding the distinction between single-source DoS and distributed DDoS attacks is essential for implementing appropriate defenses.

### DENIAL-OF-SERVICE (DoS)

#### Single-Source Attacks

Traditional DoS attacks originate from a single system targeting a victim. While simpler, they have limitations.

##### DoS Characteristics

- ▶ Single attacking machine
- ▶ Limited bandwidth/resources
- ▶ Easier to trace and block
- ▶ Often exploits specific vulnerabilities
- ▶ May be sufficient for small targets

##### DoS Advantages (for attacker)

- ▶ Simple to execute
- ▶ No botnet required
- ▶ Direct control over attack
- ▶ Lower setup complexity

##### DoS Limitations

- ▶ Limited attack volume
- ▶ Single point of failure
- ▶ Easy to block source IP
- ▶ Traceable to source
- ▶ Ineffective against large targets

### DISTRIBUTED DENIAL-OF-SERVICE (DDoS)

#### Multi-Source Attacks

DDoS attacks leverage multiple systems simultaneously, making them far more powerful and difficult to mitigate.

##### DDoS Characteristics

- ▶ Multiple attacking sources
- ▶ Massive combined bandwidth
- ▶ Difficult to distinguish from legitimate traffic
- ▶ Challenging to block all sources
- ▶ Often uses compromised systems (botnet)

##### DDoS Attack Sources

- ▶ **Botnets** – Networks of compromised devices
- ▶ **Voluntary Networks** – Hacktivism (LOIC)
- ▶ **Reflected Traffic** – Spoofed source addresses
- ▶ **Cloud Resources** – Rented/compromised VMs
- ▶ **IoT Devices** – Insecure connected devices

## DDoS ATTACK ARCHITECTURE

### Traditional Botnet Model

Hierarchical command and control structure:

- ▶ Attacker controls Command & Control (C2) server
- ▶ C2 communicates with bot handlers
- ▶ Handlers control groups of bots
- ▶ Bots (zombies) execute attack commands
- ▶ Attack targets victim infrastructure

### Modern Attack Infrastructure

- ▶ Peer-to-peer botnets (no central C2)
- ▶ Cloud-based attack platforms
- ▶ DDoS-as-a-Service offerings
- ▶ Bulletproof hosting
- ▶ Cryptocurrency payments for anonymity

## DDoS ATTACK TYPES OVERVIEW

### Layer 3/4 Attacks (Network/Transport)

- ▶ Target network infrastructure
- ▶ Consume bandwidth and connections
- ▶ Measured in Gbps/Tbps and pps
- ▶ Examples: UDP flood, SYN flood, ICMP flood

### Layer 7 Attacks (Application)

- ▶ Target application services
- ▶ Consume server resources
- ▶ Measured in requests per second
- ▶ Examples: HTTP flood, Slowloris

## COMPARING DoS AND DDoS

### DoS

- ▶ Source: Single machine
- ▶ Scale: Limited (Mbps-Gbps)
- ▶ Complexity: Low
- ▶ Cost: Minimal
- ▶ Detection: Easier
- ▶ Mitigation: Block source IP

### DDoS

- ▶ Source: Thousands/millions of machines
- ▶ Scale: Massive (Tbps possible)
- ▶ Complexity: High
- ▶ Cost: Botnet or service required
- ▶ Detection: Harder (distributed)
- ▶ Mitigation: Complex, multi-layered

## 3. VOLUMETRIC ATTACKS

---

Volumetric attacks aim to consume all available bandwidth between the target and the internet. These are the most common DDoS attacks, measured in bits per second (bps).

### VOLUMETRIC ATTACK OBJECTIVES

- ▶ Saturate target's internet bandwidth
- ▶ Overwhelm network infrastructure
- ▶ Exhaust ISP resources
- ▶ Cause complete network unavailability
- ▶ Simple but effective approach

### UDP FLOOD

#### Attack Mechanism

Sends massive amounts of UDP packets to random ports on the target system.

#### How UDP Flood Works

- ▶ Attacker sends UDP packets to random ports
- ▶ Target checks for listening application
- ▶ No application = ICMP Destination Unreachable
- ▶ Volume overwhelms target's capacity
- ▶ Legitimate traffic cannot get through

#### UDP Flood Characteristics

- ▶ Connectionless - no handshake required
- ▶ Easy to spoof source addresses
- ▶ High packet rate possible
- ▶ Stateless, low overhead for attacker

```
hping3 --udp -p 53 --flood target_ip
```

### ICMP FLOOD (PING FLOOD)

#### Attack Mechanism

Overwhelm target with ICMP Echo Request (ping) packets.

#### How ICMP Flood Works

- ▶ Send massive ICMP Echo Requests
- ▶ Target must process each request
- ▶ Echo Reply consumes outbound bandwidth
- ▶ Both inbound and outbound saturation

```
hping3 --icmp --flood target_ip
```

#### Smurf Attack (Legacy)

Amplified ICMP attack using broadcast:

- ▶ Send ICMP to network broadcast address
- ▶ Spoof source as victim's IP
- ▶ All hosts reply to victim
- ▶ Amplification based on network size

✖ Mostly mitigated in modern networks

## DNS FLOOD

### Attack Mechanism

Flood DNS servers with requests to exhaust resources.

### DNS Flood Types

- ▶ **Direct DNS Flood** – Massive queries to DNS server
- ▶ **DNS Amplification** – Reflected, amplified attack
- ▶ **Random Subdomain** – Queries for non-existent records
- ▶ **NXDOMAIN Attack** – Exhaust cache with invalid domains

### Impact

- ▶ DNS server overwhelmed
- ▶ Legitimate lookups fail
- ▶ Services become unreachable
- ▶ Cascade effect on dependent services

## FRAGMENTATION ATTACKS

### IP Fragmentation

Exploit packet reassembly process:

- ▶ **Teardrop** – Overlapping fragment offsets
- ▶ **Ping of Death** – Oversized ICMP packets
- ▶ **Fragment Flood** – High volume of fragments
- ▶ Target exhausts memory for reassembly
- ▶ CPU intensive to process

## VOLUMETRIC ATTACK CHARACTERISTICS

### Common Features

- ▶ High bandwidth consumption
- ▶ Often spoofed source IPs
- ▶ Measured in Gbps/Tbps
- ▶ May use amplification
- ▶ Target: Network layer
- ▶ Defense: Upstream filtering, scrubbing

### Detection Indicators

- ▶ Sudden bandwidth spike
- ▶ Traffic from unusual sources
- ▶ Single protocol dominance
- ▶ Geographic anomalies
- ▶ Packet size patterns

## VOLUMETRIC ATTACK MITIGATION

- ▶ Over-provision bandwidth capacity
- ▶ Use DDoS mitigation services
- ▶ Deploy traffic scrubbing
- ▶ Implement rate limiting
- ▶ Block traffic from known bad sources
- ▶ Use anycast distribution
- ▶ Filter at ISP level

## 4. PROTOCOL ATTACKS

---

Protocol attacks exploit weaknesses in network protocols to consume server resources, connection state tables, or infrastructure capacity. These attacks target Layer 3 and Layer 4 of the OSI model.

### SYN FLOOD

#### TCP Handshake Exploitation

The most common protocol attack, exploiting the TCP three-way handshake mechanism.

##### TCP Three-Way Handshake (Normal)

- ▶ Client sends SYN (synchronize)
- ▶ Server responds with SYN-ACK
- ▶ Client sends ACK (connection established)
- ▶ Server allocates resources for connection

##### SYN Flood Attack

- ▶ Attacker sends flood of SYN packets
- ▶ Often with spoofed source IPs
- ▶ Server sends SYN-ACK, waits for ACK
- ▶ ACK never arrives (spoofed IP)
- ▶ Half-open connections fill state table
- ▶ Legitimate connections rejected

```
hping3 -S --flood -p 80 target_ip
```

##### SYN Flood Impact

- ▶ Connection table exhaustion
- ▶ Memory depletion
- ▶ CPU overload processing requests
- ▶ Service becomes unavailable

### ACK FLOOD

#### Attack Mechanism

Flood target with TCP ACK packets:

- ▶ Send massive ACK packets
- ▶ Target must process each packet
- ▶ Check against existing connections
- ▶ Generate RST for invalid ACKs
- ▶ Resource exhaustion from processing

### RST FLOOD

Flood with TCP Reset packets:

- ▶ Disrupt existing connections
- ▶ Cause connection termination
- ▶ Application-level disruption
- ▶ May require valid sequence numbers

## TCP STATE EXHAUSTION

### Connection Table Attacks

Exhaust connection tracking resources on firewalls and servers.

#### Attack Methods

- ▶ Open many legitimate connections
- ▶ Keep connections alive (idle)
- ▶ Fill connection tracking tables
- ▶ New connections rejected
- ▶ Affects stateful firewalls heavily

#### Sockstress Attack

Specialized TCP state exhaustion:

- ▶ Complete TCP handshake normally
- ▶ Advertise zero window size
- ▶ Server waits with open connection
- ▶ Persistent resource consumption

## PUSH AND ACK FLOOD

Send TCP packets with PSH and ACK flags:

- ▶ Forces immediate data processing
- ▶ Bypasses some TCP flood detection
- ▶ Strains application layer
- ▶ May trigger application responses

## SESSION ATTACKS

### Connection Establishment Flood

- ▶ Complete handshake, immediate disconnect
- ▶ Rapid connection cycling
- ▶ State table churn
- ▶ Resource allocation/deallocation overhead

### SSL/TLS Exhaustion

Exploit resource-intensive encryption:

- ▶ TLS handshake is CPU intensive
- ▶ Asymmetric cost (client vs server)
- ▶ Server does more work
- ▶ SSL renegotiation attacks
- ▶ THC-SSL-DOS tool exploitation

## PROTOCOL ATTACK MITIGATION

### SYN Flood Defenses

- ▶ **SYN Cookies** – Stateless connection validation
- ▶ **SYN Proxy** – Validate before passing to server
- ▶ **Rate Limiting** – Limit SYN packets per source
- ▶ **Timeout Reduction** – Faster half-open expiration
- ▶ **Increased Backlog** – Larger connection queue

```
sysctl -w net.ipv4.tcp_syncookies=1
```

### General Protocol Defenses

- ▶ Increase connection table capacity

- ▶ Deploy stateless packet filtering
- ▶ Use TCP proxy/load balancer
- ▶ Implement connection rate limiting
- ▶ Configure appropriate timeouts
- ▶ Monitor connection states

## 5. APPLICATION LAYER ATTACKS

---

Application layer attacks (Layer 7) target specific services and applications. They require fewer resources than volumetric attacks but can be equally devastating by exhausting application server resources.

### APPLICATION LAYER ATTACK CHARACTERISTICS

- ▶ Target specific applications/services
- ▶ Lower bandwidth requirement
- ▶ Harder to distinguish from legitimate traffic
- ▶ Measured in requests per second (rps)
- ▶ Exploit application logic
- ▶ Can bypass network-layer defenses
- ▶ Often require valid sessions

### HTTP FLOOD

#### Web Server Exhaustion

Overwhelm web servers with HTTP requests.

#### HTTP GET Flood

- ▶ Request same resource repeatedly
- ▶ Or random URLs to bypass caching
- ▶ Server must process each request
- ▶ Database queries may be triggered
- ▶ Can appear as legitimate traffic

```
GET /index.php HTTP/1.1
GET /search?q=random123 HTTP/1.1
```

#### HTTP POST Flood

- ▶ Submit form data repeatedly
- ▶ Often targets login, search, forms
- ▶ Server-side processing intensive
- ▶ May trigger database operations
- ▶ Harder to cache POST responses

#### HTTP Request Characteristics

- ▶ Valid HTTP headers
- ▶ Complete TCP handshake
- ▶ May include cookies/sessions
- ▶ Mimics real browser behavior
- ▶ User-Agent rotation

### SLOWLORIS

#### Slow Connection Attack

Keep connections open by sending partial requests very slowly.

#### How Slowloris Works

- ▶ Open multiple connections to server
- ▶ Send partial HTTP request
- ▶ Never complete the request

- ▶ Send additional headers periodically
- ▶ Server waits for complete request
- ▶ Connection pool exhausted
- ▶ Legitimate users cannot connect

### Slowloris Technique

```
GET / HTTP/1.1
Host: target.com
X-Header: [send more headers slowly...]
```

Never send final blank line to complete request

### Slowloris Characteristics

- ▶ Low bandwidth requirement
- ▶ Single machine can be effective
- ▶ Targets connection limits
- ▶ Apache particularly vulnerable
- ▶ Difficult to detect

## SLOW POST (R.U.D.Y.)

### R.U.D.Y. - R-U-Dead-Yet?

Send POST body data extremely slowly:

- ▶ Start legitimate POST request
- ▶ Specify large Content-Length
- ▶ Send body data one byte at a time
- ▶ Server waits for complete body
- ▶ Connection held open indefinitely

## SLOW READ ATTACK

Read server responses very slowly:

- ▶ Make legitimate request
- ▶ Advertise small receive window
- ▶ Server buffers response data
- ▶ Memory exhaustion on server
- ▶ Connection pool depletion

## APPLICATION-SPECIFIC ATTACKS

### WordPress XML-RPC

- ▶ Pingback amplification
- ▶ Brute force via XML-RPC
- ▶ System.multicall abuse

### DNS Application Attacks

- ▶ Random subdomain queries
- ▶ NXDOMAIN flooding
- ▶ Recursive query exhaustion

### Database Exhaustion

- ▶ Complex query flooding
- ▶ Search functionality abuse
- ▶ Heavy report generation

## APPLICATION LAYER DEFENSE

- Implement Web Application Firewall (WAF)
- Use rate limiting per IP/session
- Deploy CAPTCHA for suspicious traffic
- Set connection and request timeouts

- Use reverse proxy/load balancer
- Implement request queuing
- Monitor application performance
- Cache static content aggressively

## 6. AMPLIFICATION AND REFLECTION ATTACKS

---

Amplification attacks exploit protocols that generate large responses to small requests, allowing attackers to multiply their traffic volume. Reflection uses third-party servers to hide attack origin.

### REFLECTION ATTACK CONCEPT

#### How Reflection Works

Use third-party servers to deliver attack traffic:

- ▶ Attacker spoofs source IP as victim's
- ▶ Sends requests to vulnerable servers
- ▶ Servers respond to spoofed address (victim)
- ▶ Victim receives flood of responses
- ▶ Attack origin is hidden

#### Benefits for Attackers

- ▶ Hide true attack source
- ▶ Leverage third-party resources
- ▶ Difficult to trace back
- ▶ Combine with amplification for power

### AMPLIFICATION CONCEPT

#### Bandwidth Amplification Factor (BAF)

Ratio of response size to request size:

- ▶ Small request generates large response
- ▶ Multiplies attacker's bandwidth
- ▶ Higher factor = more powerful attack

BAF = Response Size / Request Size

#### Example Amplification Factors

- ▶ **Memcached:** 51,000x amplification
- ▶ **NTP:** 556x amplification
- ▶ **DNS:** 28-54x amplification
- ▶ **SSDP:** 30x amplification
- ▶ **SNMP:** 6x amplification
- ▶ **Chargen:** 358x amplification

### DNS AMPLIFICATION

#### Attack Mechanism

Exploit DNS servers for traffic amplification:

#### Attack Process

- ▶ Find open DNS resolvers
- ▶ Craft DNS query with spoofed source (victim)
- ▶ Request records with large responses (ANY, TXT)
- ▶ DNS server sends large response to victim
- ▶ Amplification factor: 28-54x typical

**Query Example**

Small query: ~60 bytes

Large response: ~3000 bytes (ANY record)

Amplification: 50x

## NTP AMPLIFICATION

### NTP Monlist Attack

Exploit NTP servers' monitoring command:

#### Attack Details

- ▶ Send MONLIST command to NTP server
- ▶ Server returns list of last 600 clients
- ▶ Small request, massive response
- ▶ Amplification: up to 556x
- ▶ Widely used in major attacks

```
ntpdc -c monlist ntp_server
```

#### Mitigation

- ▶ Disable monlist on NTP servers
- ▶ Upgrade to NTP 4.2.7+ (removed)
- ▶ Block NTP from untrusted sources

## MEMCACHED AMPLIFICATION

### Record-Breaking Amplification

Memcached servers abused for massive amplification:

#### Attack Characteristics

- ▶ UDP port 11211 exploitation
- ▶ Store large data, request retrieval
- ▶ Amplification up to 51,000x
- ▶ Used in 1.7 Tbps attack (2018)
- ▶ Highest known amplification factor

#### Mitigation

- ▶ Disable UDP on Memcached
- ▶ Bind to localhost only
- ▶ Firewall port 11211
- ▶ Enable SASL authentication

## OTHER AMPLIFICATION VECTORS

### SSDP Amplification

- ▶ Simple Service Discovery Protocol
- ▶ UPnP device discovery
- ▶ Port 1900/UDP
- ▶ 30x amplification
- ▶ IoT devices commonly vulnerable

### SNMP Amplification

- ▶ GetBulk requests
- ▶ Community string: 'public'
- ▶ 6x amplification
- ▶ Network device exploitation

### Chargen Amplification

- ▶ Character Generator Protocol
- ▶ Port 19/UDP

- ▶ 358x amplification
- ▶ Legacy service, should be disabled

## AMPLIFICATION DEFENSE

- Block spoofed traffic (BCP38/BCP84)
- Disable unnecessary UDP services
- Configure services to require authentication
- Rate limit responses
- Use response rate limiting (RRL)
- Monitor for amplification indicators
- Deploy DDoS mitigation services

## 7. BOTNETS AND ATTACK INFRASTRUCTURE

---

Botnets are networks of compromised computers controlled by attackers. They provide the distributed infrastructure needed for large-scale DDoS attacks and are a critical component of the DDoS ecosystem.

### BOTNET FUNDAMENTALS

#### What is a Botnet?

A botnet is a collection of internet-connected devices infected with malware that allows remote control by an attacker (botmaster). Each infected device is called a 'bot' or 'zombie.'

#### Botnet Components

- ▶ **Bots/Zombies** – Compromised devices
- ▶ **Botmaster** – Attacker controlling the botnet
- ▶ **C2 Server** – Command and Control infrastructure
- ▶ **C2 Protocol** – Communication method

#### Botnet Capabilities

- ▶ DDoS attacks
- ▶ Spam distribution
- ▶ Credential theft
- ▶ Cryptocurrency mining
- ▶ Click fraud
- ▶ Ransomware distribution
- ▶ Proxy services

### BOTNET ARCHITECTURES

#### Centralized (Client-Server)

Traditional hierarchical structure:

- ▶ Single C2 server controls all bots
- ▶ Easy to manage for attacker
- ▶ Single point of failure
- ▶ Easier to disrupt by taking down C2
- ▶ IRC, HTTP, custom protocols

#### Decentralized (Peer-to-Peer)

Distributed control structure:

- ▶ No central C2 server
- ▶ Bots communicate peer-to-peer
- ▶ Highly resilient to takedown
- ▶ Harder to trace command origin
- ▶ More complex to manage
- ▶ Examples: Gameover Zeus, Hajime

#### Hybrid Architecture

- ▶ Combination of centralized and P2P
- ▶ Fallback mechanisms
- ▶ Domain generation algorithms (DGA)
- ▶ Fast-flux DNS

## IOT BOTNETS

### Internet of Things Exploitation

IoT devices have become primary botnet targets due to weak security.

#### Why IoT Devices?

- ▶ Default/weak credentials
- ▶ Rarely updated firmware
- ▶ Always-on connectivity
- ▶ Limited security capabilities
- ▶ Massive number of devices
- ▶ Users unaware of compromise

#### Notable IoT Botnets

- ▶ **Mirai** – 2016, DVRs/cameras, 620 Gbps attack
- ▶ **Mozi** – 2019, routers, DVRs, P2P-based
- ▶ **Gafgyt/Bashlite** – Routers, IoT devices
- ▶ **Meris** – 2021, MikroTik routers, 22M rps
- ▶ **Mantis** – 2022, virtual machines, 26M rps

#### Mirai Impact

- ▶ Attacked Dyn DNS (October 2016)
- ▶ Major internet outage
- ▶ Twitter, Netflix, GitHub affected
- ▶ Source code released publicly
- ▶ Spawned many variants

## DDoS-FOR-HIRE SERVICES

### Booter/Stresser Services

Commercial DDoS attack services available for purchase:

#### Service Characteristics

- ▶ Web-based interface
- ▶ Subscription-based pricing
- ▶ Various attack methods
- ▶ Anonymous cryptocurrency payment
- ▶ Customer support offered
- ▶ Marketed as 'stress testing'

#### Pricing Examples

- ▶ \$10-50/month for basic access
- ▶ \$100-500/month for premium
- ▶ Pay-per-attack options
- ▶ Volume discounts

⚠ Using booter services is illegal regardless of marketing claims

## BULLETPROOF HOSTING

Infrastructure providers that ignore abuse complaints:

- ▶ Host C2 servers and attack infrastructure
- ▶ Located in permissive jurisdictions
- ▶ Ignore takedown requests
- ▶ Anonymous registration

- ▶ Cryptocurrency payment

## **BOTNET DEFENSE**

- Keep all devices patched and updated
- Change default credentials
- Implement network segmentation
- Monitor for C2 traffic patterns
- Deploy endpoint protection
- Participate in botnet takedown efforts

## 8. DoS/DDoS ATTACK TOOLS

---

Various tools exist for conducting and testing DoS/DDoS attacks. Understanding these tools is essential for both red team testing and defensive preparation.

⚠ These tools should only be used with explicit authorization on systems you own or have permission to test

### NETWORK LAYER TOOLS

#### hping3

Versatile packet crafting and testing tool:

- ▶ TCP, UDP, ICMP, RAW-IP modes
- ▶ Custom packet construction
- ▶ Flood mode for testing
- ▶ Port scanning capabilities

```
hping3 -S --flood -p 80 target
hping3 --udp --flood -p 53 target
hping3 --icmp --flood target
```

#### LOIC (Low Orbit Ion Cannon)

GUI-based flood testing tool:

- ▶ TCP, UDP, HTTP flood modes
- ▶ Originated from 4chan/Anonymous
- ▶ Easy to use interface
- ▶ Hivemind mode for coordination
- ▶ Easily detected/blocked

✖ Source IP is not hidden - easily traced

#### HOIC (High Orbit Ion Cannon)

Enhanced version of LOIC:

- ▶ HTTP-based attacks only
- ▶ Booster scripts for customization
- ▶ Higher request rates
- ▶ Randomized headers
- ▶ Still exposes source IP

### APPLICATION LAYER TOOLS

#### Slowloris

Slow HTTP attack tool:

- ▶ Perl/Python implementations
- ▶ Holds connections open
- ▶ Low bandwidth requirement
- ▶ Effective against Apache

```
slowloris.pl -dns target.com -port 80
```

#### R.U.D.Y. (R-U-Dead-Yet)

Slow POST attack tool:

- ▶ Targets web forms
- ▶ Sends body slowly
- ▶ Low resource requirement

```
python rudy.py -t target.com
```

### **GoldenEye**

HTTP DoS test tool:

- ▶ HTTP GET/POST floods
- ▶ Keep-alive connections
- ▶ Randomized user agents
- ▶ Multiple workers

```
python goldeneye.py http://target.com
```

### **HULK (HTTP Unbearable Load King)**

HTTP flood testing tool:

- ▶ Obfuscated traffic generation
- ▶ Unique requests per hit
- ▶ Bypasses caching
- ▶ Python-based

## **STRESS TESTING FRAMEWORKS**

### **Siege**

Legitimate load testing tool:

- ▶ HTTP load testing
- ▶ Multiple concurrent users
- ▶ Transaction timing
- ▶ Benchmarking mode

```
siege -c 100 -t 1M http://target.com
```

### **Apache JMeter**

Full-featured load testing:

- ▶ GUI and CLI modes
- ▶ Multiple protocols
- ▶ Distributed testing
- ▶ Detailed reporting
- ▶ Enterprise-grade tool

### **Locust**

Python-based load testing:

- ▶ User behavior scripting
- ▶ Web UI for monitoring
- ▶ Distributed mode
- ▶ Modern architecture

## **AMPLIFICATION TOOLS**

### **NTPDDoS**

NTP amplification testing

### **DNS amplification scripts**

Custom scripts for DNS testing

### **Memcrashed**

Memcached amplification PoC

## **TOOL DETECTION**

Security teams should recognize attack tool signatures:

- ▶ LOIC - distinctive traffic patterns
- ▶ Slowloris - partial HTTP headers
- ▶ Known user-agent strings
- ▶ Request rate patterns
- ▶ Payload signatures

## LEGITIMATE TESTING CONSIDERATIONS

- Obtain written authorization
- Test in isolated environment
- Coordinate with ISP/hosting
- Have rollback plan
- Monitor for collateral impact
- Document all testing

## 9. CASE STUDIES: MAJOR DDoS ATTACKS

---

Examining notable DDoS attacks provides insight into attack evolution, attacker motivations, and lessons for defenders.

### DYN DNS ATTACK (2016)

#### Attack Overview

- ▶ **Date:** October 21, 2016
- ▶ **Target:** Dyn DNS infrastructure
- ▶ **Method:** Mirai botnet IoT DDoS
- ▶ **Peak Volume:** 1.2 Tbps
- ▶ **Duration:** Multiple waves over one day

#### Impact

- ▶ Major internet outage
- ▶ Twitter, Netflix, Reddit, GitHub affected
- ▶ PayPal, Spotify, PlayStation unavailable
- ▶ East Coast US primary impact
- ▶ Millions of users affected

#### Key Lessons

- ▶ IoT devices as attack weapons
- ▶ DNS infrastructure criticality
- ▶ Single points of failure risk
- ▶ Need for redundant DNS

### GITHUB ATTACK (2018)

#### Attack Overview

- ▶ **Date:** February 28, 2018
- ▶ **Target:** GitHub
- ▶ **Method:** Memcached amplification
- ▶ **Peak Volume:** 1.35 Tbps
- ▶ **Duration:** ~20 minutes

#### Attack Details

- ▶ Largest attack at that time
- ▶ Memcached UDP exploitation
- ▶ 51,000x amplification factor
- ▶ Mitigated within 10 minutes
- ▶ Akamai Prolexic scrubbing

#### Key Lessons

- ▶ Memcached UDP danger
- ▶ Importance of DDoS protection
- ▶ Quick mitigation possible
- ▶ Need to secure UDP services

## AWS SHIELD ATTACK (2020)

### Attack Overview

- ▶ **Date:** February 2020
- ▶ **Target:** AWS customer
- ▶ **Method:** CLDAP reflection
- ▶ **Peak Volume:** 2.3 Tbps
- ▶ **Duration:** Three days

### Significance

- ▶ Largest reported attack to date (at time)
- ▶ CLDAP (Connection-less LDAP) abuse
- ▶ 56-70x amplification
- ▶ Successfully mitigated by AWS Shield

## GOOGLE ATTACK (2017, DISCLOSED 2020)

### Attack Overview

- ▶ **Date:** September 2017
- ▶ **Target:** Google infrastructure
- ▶ **Method:** UDP amplification
- ▶ **Peak Volume:** 2.54 Tbps
- ▶ **Duration:** Six months of campaigns

### Details

- ▶ State-sponsored (China attributed)
- ▶ Multiple attack campaigns
- ▶ 180,000 exposed servers used
- ▶ Disclosed three years later

## CLOUDFLARE RECORD ATTACKS (2022-2023)

### HTTP/2 Rapid Reset (2023)

- ▶ **Peak:** 201 million requests per second
- ▶ **Method:** HTTP/2 protocol abuse
- ▶ **CVE:** CVE-2023-44487
- ▶ New L7 attack technique
- ▶ Exploited stream multiplexing

### Mirai Variant Attack (2022)

- ▶ **Peak:** 26 million requests per second
- ▶ Cloudflare customer targeted
- ▶ 5,067 devices in botnet
- ▶ ~5,200 rps per device

## ATTACK EVOLUTION TRENDS

- ▶ Increasing attack volumes (Tbps normal)
- ▶ More sophisticated L7 attacks
- ▶ IoT botnet proliferation
- ▶ Protocol vulnerability exploitation
- ▶ Multi-vector attacks
- ▶ Ransom DDoS (RDoS) increase
- ▶ State-sponsored attacks

## LESSONS FROM CASE STUDIES

- DDoS protection is essential
- Redundant infrastructure needed
- Quick detection and response critical
- Monitor for new attack vectors
- Patch amplification vulnerabilities
- Plan for multi-day attacks

## 10. DETECTION AND MONITORING

---

Early detection of DDoS attacks enables faster response and mitigation. Effective monitoring combines traffic analysis, anomaly detection, and alerting systems.

### DETECTION CHALLENGES

- ▶ Distinguishing attacks from legitimate traffic
- ▶ Flash crowds vs DDoS
- ▶ Slow attacks harder to detect
- ▶ Encrypted traffic visibility
- ▶ Distributed attack sources
- ▶ Evolving attack techniques

### TRAFFIC ANALYSIS

#### Baseline Establishment

Understanding normal traffic patterns:

- ▶ Average bandwidth utilization
- ▶ Peak traffic periods
- ▶ Geographic traffic sources
- ▶ Protocol distribution
- ▶ Request patterns and rates
- ▶ Seasonal variations

#### Anomaly Indicators

- ▶ Sudden bandwidth spikes
- ▶ Unusual protocol ratios
- ▶ Geographic anomalies
- ▶ Time-based anomalies
- ▶ Request rate spikes
- ▶ Error rate increases

### DETECTION METHODS

#### Signature-Based Detection

Match known attack patterns:

- ▶ Known tool signatures
- ▶ Attack payload patterns
- ▶ Protocol violations
- ▶ Fast but limited to known attacks

#### Anomaly-Based Detection

Identify deviations from normal:

- ▶ Statistical analysis
- ▶ Machine learning models
- ▶ Behavioral baselines
- ▶ Can detect unknown attacks
- ▶ May generate false positives

#### Rate-Based Detection

Monitor traffic rates:

- ▶ Packets per second thresholds

- ▶ Connections per second limits
- ▶ Requests per second monitoring
- ▶ Per-source rate tracking

## MONITORING TOOLS AND SYSTEMS

### Network Monitoring

- ▶ **NetFlow/sFlow/IPFIX** – Flow-based traffic analysis
- ▶ **SNMP** – Bandwidth and interface monitoring
- ▶ **Wireshark** – Packet capture analysis
- ▶ **ntopng** – Real-time network monitoring

### Infrastructure Monitoring

- ▶ **Nagios/Zabbix** – Server and service monitoring
- ▶ **Grafana** – Visualization dashboards
- ▶ **Prometheus** – Metrics collection
- ▶ **ELK Stack** – Log aggregation and analysis

### DDoS-Specific Tools

- ▶ **FastNetMon** – DDoS detection toolkit
- ▶ **Kentik** – Network intelligence platform
- ▶ **Arbor Networks** – DDoS detection appliances
- ▶ Cloud provider monitoring dashboards

## KEY METRICS TO MONITOR

### Network Metrics

- ▶ Bandwidth utilization (inbound/outbound)
- ▶ Packets per second
- ▶ Protocol distribution
- ▶ Source IP diversity
- ▶ Geographic distribution

### Server Metrics

- ▶ CPU utilization
- ▶ Memory usage
- ▶ Connection counts
- ▶ Request rates
- ▶ Response times
- ▶ Error rates

### Application Metrics

- ▶ HTTP response codes
- ▶ Page load times
- ▶ Transaction completion
- ▶ User experience metrics
- ▶ API response times

## ALERTING AND RESPONSE

### Alert Configuration

- ▶ Threshold-based alerts
- ▶ Rate-of-change alerts
- ▶ Compound condition alerts
- ▶ Tiered severity levels
- ▶ Escalation procedures

### Response Integration

- ▶ Automated mitigation triggers
- ▶ Incident response team notification

- ▶ Status page updates
- ▶ Customer communication
- ▶ Post-incident analysis

## DETECTION CHECKLIST

- Establish traffic baselines
- Deploy flow-based monitoring
- Implement anomaly detection
- Configure rate-based alerts
- Monitor server resources
- Track application metrics
- Set up automated alerting
- Test detection regularly

## 11. MITIGATION STRATEGIES

---

DDoS mitigation involves multiple layers of defense working together to absorb, filter, and deflect attack traffic while maintaining service availability.

### MITIGATION APPROACHES

#### On-Premise Mitigation

Local defense equipment and techniques:

- ▶ Hardware appliances
- ▶ Firewall rules
- ▶ Load balancer filtering
- ▶ Router ACLs
- ▶ Limited by local bandwidth
- ▶ Best for smaller attacks

#### Cloud-Based Mitigation

Scrubbing centers and CDN protection:

- ▶ Massive bandwidth capacity
- ▶ Global distribution
- ▶ Always-on or on-demand
- ▶ Traffic scrubbing
- ▶ Expert management
- ▶ Handles large-scale attacks

#### Hybrid Approach

Combination of on-premise and cloud:

- ▶ On-premise for small attacks
- ▶ Cloud for volumetric attacks
- ▶ Automatic failover
- ▶ Best of both worlds

## TRAFFIC SCRUBBING

### How Scrubbing Works

Divert traffic through cleaning center:

- ▶ BGP announcement redirects traffic
- ▶ All traffic routed to scrubbing center
- ▶ Malicious traffic identified and dropped
- ▶ Clean traffic forwarded to origin
- ▶ Return path may be direct or tunneled

### Scrubbing Techniques

- ▶ Rate limiting
- ▶ IP reputation filtering
- ▶ Geographic filtering
- ▶ Protocol validation
- ▶ Behavioral analysis
- ▶ Challenge-response (CAPTCHA, JS)

## CDN AND ANYCAST

### Content Delivery Network Benefits

- ▶ Distribute content globally
- ▶ Absorb traffic at edge
- ▶ Cache static content
- ▶ Reduce origin load
- ▶ Built-in DDoS protection

### Anycast Distribution

Single IP address, multiple locations:

- ▶ Traffic routed to nearest location
- ▶ Absorbs attacks across network
- ▶ No single point of failure
- ▶ Geographic distribution of load
- ▶ Used by major DNS providers

## RATE LIMITING

### Types of Rate Limiting

- ▶ **Per-IP Rate Limit** – Limit requests from single source
- ▶ **Per-Endpoint** – Limit requests to specific URLs
- ▶ **Connection Limit** – Maximum concurrent connections
- ▶ **Bandwidth Limit** – Cap data transfer rates

### Implementation

```
nginx: limit_req zone=one burst=5 nodelay;
iptables: -m limit --limit 25/second --limit-burst 50
```

- ▶ Web server configuration
- ▶ Firewall rules
- ▶ Load balancer settings
- ▶ API gateway limits

## BLACK HOLE ROUTING

### Traffic Discard

Drop traffic destined for attacked IP:

- ▶ Last resort mitigation
- ▶ Announce black hole route to ISP
- ▶ All traffic to IP dropped
- ▶ Prevents collateral damage
- ▶ Target becomes unreachable
- ▶ Attacker achieves goal

### Remote Triggered Black Hole (RTBH)

- ▶ Customer-triggered black hole
- ▶ BGP community signaling
- ▶ ISP drops traffic upstream
- ▶ Protects infrastructure

## SINKHOLING

Redirect attack traffic to analysis:

- ▶ Route traffic to controlled server
- ▶ Analyze attack patterns

- ▶ Doesn't disrupt target
- ▶ Used for C2 disruption

## ISP COORDINATION

- ▶ Upstream filtering requests
- ▶ Black hole routing
- ▶ Bandwidth provisioning
- ▶ Attack reporting
- ▶ Incident coordination

## 12. COUNTERMEASURES AND DEFENSE

---

Comprehensive DDoS defense requires preparation, multiple layers of protection, and tested response procedures. Prevention and resilience are key.

### INFRASTRUCTURE HARDENING

#### Network Architecture

- ▶ Overprovision bandwidth capacity
- ▶ Multiple ISP connections (multihoming)
- ▶ Anycast for critical services
- ▶ Geographic distribution
- ▶ Redundant infrastructure
- ▶ Network segmentation

#### Server Hardening

- ▶ Tune TCP/IP stack parameters
- ▶ Increase connection limits
- ▶ Configure SYN cookies
- ▶ Reduce timeouts
- ▶ Disable unnecessary services

```
sysctl -w net.ipv4.tcp_syncookies=1
sysctl -w net.ipv4.tcp_max_syn_backlog=2048
sysctl -w net.ipv4.tcp_synack_retries=2
```

#### Application Hardening

- ▶ Efficient code and database queries
- ▶ Caching implementation
- ▶ Connection pooling
- ▶ Request queuing
- ▶ Graceful degradation

## NETWORK SECURITY CONTROLS

#### Firewall Configuration

- ▶ Block invalid packets
- ▶ Rate limit connection attempts
- ▶ Geographic blocking if applicable
- ▶ Protocol filtering
- ▶ Stateful inspection limits

#### Access Control Lists (ACLs)

- ▶ Block known bad sources
- ▶ Allow only required protocols
- ▶ Filter RFC 1918 addresses inbound
- ▶ Block amplification ports

```
deny udp any any eq 11211 (Memcached)
deny udp any any eq 19 (Chargen)
```

### **Load Balancing**

- ▶ Distribute traffic across servers
- ▶ Health checking
- ▶ Geographic load balancing
- ▶ Automatic failover
- ▶ Connection limiting per source

## **DDOS PROTECTION SERVICES**

### **Cloud-Based Solutions**

- ▶ **Cloudflare** – CDN with DDoS protection
- ▶ **AWS Shield** – AWS native protection
- ▶ **Akamai Prolexic** – Enterprise scrubbing
- ▶ **Azure DDoS Protection** – Azure native solution
- ▶ **Google Cloud Armor** – GCP protection
- ▶ **Imperva** – Application protection

### **Selection Criteria**

- ▶ Capacity and bandwidth
- ▶ Time to mitigation
- ▶ Global coverage
- ▶ Protocol support
- ▶ Always-on vs on-demand
- ▶ Cost structure
- ▶ SLA guarantees

## **INCIDENT RESPONSE PLANNING**

### **DDoS Response Plan**

- ▶ Define roles and responsibilities
- ▶ Establish communication channels
- ▶ Document escalation procedures
- ▶ List mitigation contacts
- ▶ Create runbooks for attack types
- ▶ Plan for customer communication

### **During Attack**

- ▶ Identify attack type and vector
- ▶ Implement appropriate mitigation
- ▶ Communicate with stakeholders
- ▶ Document timeline and actions
- ▶ Monitor mitigation effectiveness
- ▶ Coordinate with providers

### **Post-Attack**

- ▶ Conduct post-mortem analysis
- ▶ Document lessons learned
- ▶ Update protection measures
- ▶ Review and improve procedures
- ▶ Train staff on findings

## **BUSINESS CONTINUITY**

- ▶ Redundant service deployment
- ▶ Failover procedures
- ▶ Status page communication

- ▶ Alternative service delivery
- ▶ Customer notification process

## DEFENSE IN DEPTH CHECKLIST

- Conduct DDoS risk assessment
- Implement network monitoring
- Deploy DDoS protection service
- Configure firewall and ACLs
- Harden servers and applications
- Implement rate limiting
- Set up CDN for public services
- Create incident response plan
- Test mitigation procedures
- Train staff on response
- Establish ISP relationships
- Maintain emergency contacts
- Document architecture thoroughly
- Review and update regularly

## KEY DEFENSE PRINCIPLES

Remember core strategies:

- ▶ Absorb: Have capacity to handle attacks
- ▶ Detect: Know when attacks occur quickly
- ▶ Deflect: Redirect malicious traffic
- ▶ Filter: Remove bad traffic surgically
- ▶ Respond: Execute practiced procedures
- ▶ Recover: Return to normal operations
- ▶ Learn: Improve from each incident

---

<https://eph4.ai/>

Denial-of-Service • 2026 Edition